
Int. J. Advanced Networking and Applications 723
Volume: 02, Issue: 04, Pages: 723-731 (2011)

XML Solving Problem of Expert System

Yasser A. Nada
Department of computer science,

Faculty of Computers and Information Systems,
Taif University -Kingdom of Saudi Arabia,

Email: y_nada@yahoo.com

--ABSTRACT---
The Extensible Markup Language (XML) is a subset of SGML that is completely described in this paper. Its goal is to
enable generic SGML to be served, received, and processed on the Web in the way that is now possible with HTML.
XML has been designed for ease of implementation and for interoperability with both SGML and HTML.
 An expert system is a computer program designed to simulate the problem-solving behavior of a human who is an
expert in a narrow domain or discipline. Expert Systems (ES), also called Knowledge Based System (KBS), are
computer application programs that take the knowledge of one or more human experts in a field and computerize it so
that it is readily available for use.
 The main objective of this paper was to investigate the usage of different refinement methodologies for different
layers of knowledge base modeling and investigate the possibility of building an expert system development and
refinement tool. In our work we used XML as a knowledge representation to represent the knowledge base. Therefore we
used the mathematical model to refinement of a knowledge base.

Key Words: Expert System, Refinement Knowledge Base, XML

Date of Submission: October 10, 2010 Date of Acceptance: November 11, 2010

1. Introduction

Today, XML is invading the world of computers and
occupying most of its fields. It is widely spreading over
the internet, networks, information systems, software and
operating systems, DBMS, search tools, web
development and services, communication protocols and
other fields. As a result, XML data are floating within
and between different applications and systems all over
the internet and intranets. Due to the huge amount of
XML structured data being circulated, controlling XML
data becomes imperative for various purposes and aims
[1].
XML (Extensible Markup Language) has emerged as the
most important format for data exchange and storage
over systems across the greatest variety of tools and
platforms. It is a rapidly maturing technology with
powerful real-word applications, particularly for the
management, display and organization of data. Together
with its associated tools (XSL, XSLT, XPath, XLink,
XPointer, DOM DTD, Schemas, …etc), it is an essential
technology for anyone looking for more efficient and
cost effective ways of both managing and transferring
data.
Perhaps the most well known applications are web
related, but there are many other non-web based
applications where XML is useful–for example as a
replacement for (or to complement) traditional database
[2]. A lot of languages that are based on XML are
around, e.g., RDF [3], OIL [4], DAML+OIL, OWL, etc.
Further, XML tools have been used to develop a library
of inference methods to be used for reasoning on
different representations.

 Expert System (ES), also called a Knowledge Based
System (KBS), is computer application programs that
take the knowledge of one or more human experts in a
field and computerize it so that it is readily available for
use. A central problem of expert system is knowledge
base refinement [5]. The knowledge base refinement is
concerned with improving an incorrect, inconsistent, and
incomplete domain theory, and thus a uniform
refinement framework can be designed to support
knowledge base validation and maintenance [6]. The
knowledge base optimization aims at improving the
performance of the knowledge-based system by reducing
the response time of knowledge based expert system and
minimizing the number of generated questions. The
optimized system is guaranteed to compute correct
results independent of the scheduling strategy and
execution environment [7].
The outline of the paper is as follows. Section 2 gives a
brief introduction to XML. Section3 presents the XML
structure. Section 4 components of an expert system.
Section 5 shows the importance of knowledge. Section 6
explains knowledge in the expert systems. Section 7
explains knowledge base refinement. Section 8
Knowledge Representation Methodology based XML
how the proposed system works and complete example.
Finally, section9 summarizes this paper.

2. What is XML?
 Extensible Markup Language, abbreviated XML,
describes a class of data objects called XML documents
and partially describes the behavior of computer
programs which process them. XML is an application
profile or restricted form of SGML, the Standard

Int. J. Advanced Networking and Applications 724
Volume: 02, Issue: 04, Pages: 723-731 (2011)

Generalized Markup Language. By construction, XML
documents are conforming SGML documents.
 XML documents are made up of storage units called
entities, which contain either parsed or unparsed data.
Parsed data is made up of characters, some of which
form character data, and some of which form markup.
Markup encodes a description of the document's storage
layout and logical structure. XML provides a mechanism
to impose constraints on the storage layout and logical
structure.
 A software module called an XML processor is used to
read XML documents and provide access to their content
and structure. It is assumed that an XML processor is
doing its work on behalf of another module, called the
application. This specification describes the required
behavior of an XML processor in terms of how it must
read XML data and the information it must provide to the
application.
2.1 The main difference between XML and
HTML
 XML is not a replacement for HTML.
XML and HTML were designed with different goals:

XML was designed to describe data and to focus on what
data is.
HTML was designed to display data and to focus on how
data looks.
HTML is about displaying information, XML is about
describing information.

 XML specifies neither semantics nor a tag set. In fact
XML is really a meta-language for describing markup
languages. In other words, XML provides a facility to
define tags and the structural relationships between them.
Since there's no predefined tag set, there can't be any
preconceived semantics. All of the semantics of an XML
document will either be defined by the applications that
process them or by stylesheets.
 The HyperText Markup Language is the Web language
of choice, although it is problematic and limiting. XML
solves many of the problems Web authors have
experienced with HTML and is responsible for XHTML,
a recasted HTML, in XML. Web authors and other
publishers will be using XML for many years because it
offers them an effective and powerful multi-media
publishing solution.
2.2 XML is a complement to HTML
 It is important to understand that XML is not a
replacement for HTML. In the future development of the
Web it is most likely that XML will be used to structure
and describe the Web data, while HTML will be used to
format and display the same data.
2.3 XML in future Web development
 We have been participating in XML development since
its creation. It has been amazing to see how quickly the
XML standard has been developed, and how quickly a
large number of software vendors have adopted the
standard.
 We strongly believe that XML will be as important to
the future of the Web as HTML has been to the

foundation of the Web. XML is the future for all data
transmission and data manipulation over the Web.

3. XML Structure
 Each XML document has both a logical and a physical
structure. Physically, the document is composed of units
called entities. An entity may refer to other entities to
cause their inclusion in the document. A document
begins in a "root" or document entity. Logically, the
document is composed of declarations, elements,
comments, character references, and processing
instructions, all of which are indicated in the document
by explicit markup.
A software module called an XML processor is used to
read XML documents and provide access to their content
and structure. It is assumed that an XML processor is
doing its work on behalf of another module, called the
application. This specification describes the required
behavior of an XML processor in terms of how it must
read XML data and the information it must provide to the
application.
3.1 Documents
 XML documents are similar to HTML documents.
They contain information and markup tags that define the
information and are saved as ASCII text. The name of
the XML document has an XML extension 'xyz.xml'. A
data object is an XML document if it is well-formed. A
well-formed XML document may in addition be valid if
it meets certain further constraints.

� Well formed XML documents contain text and XML
tags which conform with the XML syntax.

� Valid XML documents must be well formed and are
additionally error checked against a Document Type
Definition (DTD). A DTD is a set of rules outlining
which tags are allowed, what values those tags may
contain and how the tags relate to each other. Typically a
valid document is used when documents require error
checking, and enforced structure, or are working within a
company/ industry wide environment in which many
documents need to follow the same guidelines.
 3.2 Well-Formed XML Documents
 Well-formed documents are well-formed because they
do not have to be created in a structured environment,
against a pre-defined set of structural rules, but merely
have to comply with XML well-formedness constraints.
These constraints require that elements, which are named
content containers, properly nest within each other and
use other markup syntax correctly. Well-formed XML
elements are defined by their use, not by a rigid structural
definition, allowing authors to create elements in
response to their development. This flexibility offers
authors greater control over document processing and
design than in traditional SGML environments, in which
structure must be formally defined in a DTD before any
documents can be written.
 Well-formed XML frees Web authors from the fixed
nature of HTML, allowing imaginations to prevail over
restraint. HTML is a fixed document type, meaning that

Int. J. Advanced Networking and Applications 725
Volume: 02, Issue: 04, Pages: 723-731 (2011)

it cannot be expanded or altered to improve its
description power.
 Well formed XML documents simply markup pages
with descriptive tags. You don't need to describe or
explain what these tags mean. In other words a well
formed XML document does not need a DTD, but is
must conform to the XML syntax rules. If all tags in a
document are correctly formed and follow XML
guidelines, then a document is considered as well
formed.
3.2.1 An example XML document
<?xml version="1.0"?>
<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>
</note>
 The first line in the document: The XML declaration
should always be included. It defines the XML version of
the document. In this case the document conforms to the
1.0 specification of XML.

3.3 Valid XML
 The primary difference between valid and well formed
XML is their relationship to a document type definition.
Well formed XML is designed for use without a DTD,
whereas valid XML explicitly requires it. A DTD is a set
of rules that a document follows, which software may
need to read before processing and displaying a
document. These rules generally state the name and
contents of each element and in which contexts it can and
must exist. Paragraph elements might be defined as
containing keyword and code elements and as existing
within section and note elements. Valid XML documents
may employ certain advanced features of XML, which
are not accessible to well formed documents, because of
their lack of a DTD. These features can significantly
improve the usability of a document, including: linking
mechanisms, entities and attributes. Most XML Web
sites are likely to be composed of valid XML documents,
conforming with customized DTDs, allowing their
creators the freedom to structure their sites and use much
greater feature sets than HTML has traditionally allowed.
 A "Valid" XML document is a "Well Formed" XML
document which conforms to the rules of a Document
Type Definition (DTD).
The following is the same document as above but with an
added reference to a DTD:
<?xml version="1.0"?>
<!DOCTYPE note SYSTEM "InternalNote.dtd">
<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>
</note>
 Valid XML is a more rigid, or formal, form of XML.
All XML Documents are well formed documents
(otherwise they would not be XML documents). Some

XML documents are additionally valid. Valid documents
must conform not only to the syntax, but also to the DTD
(Document Type Definition). DTD is a set of rules that
defines what tags appear in a XML document, so that
viewers of an XML document know what all the tags
mean. DTDs also describe the structure of a document.
 The main difference between valid and well formed is
that Valid XML requires a DTD and whereas Well
formed XML does not. Still it is advisable for an XML
document to have a DTD, because if several people are
authoring the document, the DTD will set out the ground
rules that they can all work by, and more importantly
they can use a parser (the validity checker) to make sure
that they are not violating the rules. The XML DTD can
either be in the prolog of the document, or it can be in a
separate file that is referred to in the prolog. More on
DTD in the section on DTD.

3.4 The Parser
 An XML parser is a processor that reads an XML
document and determines the structure and properties of
the data. If the parser goes beyond the XML rules for
well-formdness and validates the document against an
XML DTD, the parser is said to be a "validating" parser.
A generalized XML parser reads XML files and
generates a hierarchically structured tree, then hands off
data to viewers and other applications for processing. A
validating XML parser also checks the XML syntax and
reports errors.

3.4.1 Parsing Examples
 These parsing examples illustrate common mistakes
and proper use of elements. The first two examples are
well-formed XML, whereas the following ones would
produce parsing errors, as they are not well-formed.
Model your elements after the first two examples,
obeying well-formed rules.
<PRICE>$57.80</PRICE>
<PET><CAT type="Cornish Rex">Cat nests properly
within PET.</CAT></PET>
<WEATHER>Foggy
<LEVEL>Intermediate<LEVEL>
<PASSWORD>planetB612</PASSWD>
<DISTANCE TYPE=KM 120</DISTANCE>
<CAR><engine>engine does not nest properly within
CAR</CAR></engine>
3.5 XML Declaration
 These XML declarations are commonly used for
various types of XML authoring. The first two
declarations can be used to describe well-formed and
valid XML documents, respectively. The third
declaration can be considered the default XML
declaration, stating that it is an XML version 1.0
document, that it cannot standalone from external
markup declarations and that it is encoded in UTF-8, an 8
bit Unicode character encoding. Use the second XML
declaration when creating your own valid XML
documents.
<?xml version="1.0" standalone="yes"?>

Int. J. Advanced Networking and Applications 726
Volume: 02, Issue: 04, Pages: 723-731 (2011)

<?xml version="1.0" standalone="no"?>
<?xml version="1.0" standalone="no" encoding="UTF-
8"?>
3.6 General example
<?xml version="1.0" standalone="no"?>
<!DOCTYPE MEMO [
<!ELEMENT MEMO
(TO,FROM,SUBJECT,BODY,SIGN)>
<!ATTLIST MEMO importance
(HIGH|MEDIUM|LOW) "LOW">
<!ELEMENT TO (#PCDATA)>
<!ELEMENT FROM (#PCDATA)>
<!ELEMENT SUBJECT (#PCDATA)>
<!ELEMENT BODY (P+)>
<!ELEMENT P (#PCDATA)>
<!ELEMENT SIGN (#PCDATA)>
<!ATTLIST SIGN signatureFile CDATA #IMPLIED
 email CDATA #REQUIRED>
]>
<MEMO importance="HIGH">
<TO>Paper Takers</TO>
<FROM>Paper Writer</FROM>
<SUBJECT>Your impressions</SUBJECT>
<BODY>
<P>Now that you are almost done the paper, you must be
getting an idea of what XML is about. These emerging
technologies sometimes take time though before they
catch on.</P>
<P>Did you find the paper helpful? Which areas did you
find confusing? How would you improve them?</P>
</BODY>
<SIGN email="y_nada@yahoo.com">Yasser
Nada</SIGN>
</MEMO>

 4. Components of an Expert System
 All expert systems are composed of several basic
components: a user interface, a database, a knowledge
base, and an inference mechanism. Moreover, expert
system development usually proceeds through several
phases including problem selection, knowledge
acquisition, knowledge representation, programming,
testing and evaluation. Expert systems have a number of
major system components and interface with individuals
in various roles. These are illustrated in figure (1). The
major components are [8]:
- Knowledge base - a declarative representation of the

expertise, often in IF THEN rules;
- Working storage - the data which is specific to a

problem being solved;
- Inference engine - the code at the core of the system

which derives recommendations from the knowledge
base and problem-specific data in working storage;

- User interface - the code that controls the dialog
between the user and the system.

Figure 1 the Expert System Component

5. Importance of Knowledge
 Knowledge can be defined as the body of facts and
principles accumulated by human kind or the act, fact, or
state of knowing. The meaning of knowledge is closely
related to the meaning of intelligence. Intelligence
requires the possession of and access to knowledge. And
a characteristic of intelligence people is that they possess
much knowledge.
 Thus, we can say that knowledge includes and requires
the use of data and information. But it is more. It
combines relationships, correlations, dependencies, and
the notion of gestalt with data and information.

 6. Knowledge in the Expert System
 The knowledge the expert uses to solve a problem
must be represented in a fashion that can be used to code
into the computer and then be available for decision
making by the expert system. There are various formal
methods for representing knowledge and usually the
characteristics of a particular problem will determine the
appropriate representation techniques employed.
 KBS are computer programs which capture and retain
expertise that has been gained over many years of
engineering experience and also employ knowledge
gained from other (than human) knowledge sources.
KBS can reason intelligently about necessary action to
take in real time, thus freeing operational staff [9].
Moreover, separation of the knowledge base from the
control elements allows the inference engine and
algorithms to be generic so they can be applied to a
variety of processes. This means that it is possible to
begin operating a process with an empty knowledge base

User
interface

Inference
engine

Knowledge
base

Working
storage

User

Domain
Expert

Knowledg
e

Engineer

System
enginee

r

Int. J. Advanced Networking and Applications 727
Volume: 02, Issue: 04, Pages: 723-731 (2011)

and create a new knowledge base for the particular
process [10].
Knowledge bases can be represented by production rules.
These rules consist of a condition or premise followed by
an action or conclusion (IF condition...THEN action).

6.1. Knowledge Acquisition
 Knowledge acquisition is a time consuming process in
which the knowledge engineer works along side the
participating expert and extracts, structures and organizes
the information to be represented in the expert system.
 Knowledge acquisition requires no standard
methodology for extracting knowledge. However, it
usually involves a progressive number of personal
interviews of the expert(s) to record information
pertinent to the knowledge-base. Occasionally, the role
of the knowledge engineer can be significantly reduced if
the understanding of the development processes by the
participating experts are substantial and they are willing,
able to organize and express all the necessary
information to develop facts or rules based on their
personal heuristics.
 Consistency in the naming conventions of facts or
rules is vital, and the ability to develop a language which
is familiar to the end users is also important. Acquired
knowledge should be played back to experts, perhaps
using a different medium than the one used to acquire it.
During the knowledge acquisition phase, the knowledge
engineer should identify the conclusions that the expert
system should render and verify this knowledge as it is
acquired. Knowledge acquisition should also be
supplemented with a thorough review of current
literature to provide the most available up-to-date
information.
 In the most widely supported view of knowledge
acquisition stages subdivide knowledge acquisition
activities throughout the life of an expert system
development project into the following major tasks:
• Initial entering knowledge.
• Reducing or avoiding erroneous knowledge.
• Augmenting acquired knowledge.

 To explain this view we present a framework for
knowledge acquisition that identifies the major stages as
identification, conceptualization, formalization,
implementation, and testing [11].

6.2. Knowledge Engineer
 A knowledge engineer has the job of extracting this
knowledge and building the expert system knowledge
base. Having decided that your problem is suitable you
need to extract the knowledge from the expert and
represent it using your expert system shell. This is the job
of the knowledge engineer, but involves close
collaboration with the expert(s) and the end user(s).

 The knowledge engineer is the AI language and
representation expert. He should be able to select a
suitable expert system shell (and other tools) for the
project, extract the knowledge from the expert, and
implement the knowledge in a correct and efficient

knowledge base. The knowledge engineer may initially
have no knowledge of the application domain.
 To extract knowledge from the expert the knowledge
engineer must first become at least somewhat familiar
with the problem domain, maybe by reading introductory
texts or talking to the expert. After this, more systematic
interviewing of the expert begins. Typically experts are
set a series of example problems, and will explain aloud
their reasoning in solving the problem. The knowledge
engineer will abstract general rules from these
explanations, and check them with the expert [12].
 In order to develop the initial prototype the knowledge
engineer must make provisional decisions about
appropriate knowledge representation and inference
methods (e.g., rules, or rules + frames; forward chaining
or backward chaining). To test these basic design
decisions, the first prototype may only solve a small part
of the overall problem. If the methods used seem to work
well for that small part it's worth investing the effort in
representing the rest of the knowledge in the same form.

6.3. Knowledge Representation
 After the domain has been identified and knowledge
acquired from a participating expert, a model for
representing the knowledge must be developed.
Numerous techniques for handling information in the
knowledge-base are available; however, most expert
systems utilize rule-based approaches. The knowledge
engineer, working with the expert, must try to define the
best structure possible. Other commonly used approaches
include decision trees, blackboard systems and object
oriented programming.
 Knowledge representation is crucial. One of the
clearest results of artificial intelligence research so far is
that solving even apparently simple problems requires
lots of knowledge. Really understanding a single
sentence requires extensive knowledge both of language
and of the context. Really understanding a visual scene
similarly requires knowledge of the kinds of objects in
the scene. Solving problems in a particular domain
generally requires knowledge of the objects in the
domain and knowledge of how to reason in that domain -
both these types of knowledge must be represented.
 Also, knowledge representation has been defined as
"A set of syntactic and semantic conventions that make it
possible to describe things. The syntax of a
representation specifies a set of rules for combining
symbols to form expressions in the representation
language. The semantics of a representation specify how
expressions so constructed should be interpreted i.e. how
meaning can be derived from a form" [13].
 During the last thirty five years several different
representation schemes appeared. These schemes have
been classified into four categories [14]

7. Knowledge Base Refinement
 Knowledge base refinement aims to improve and
maintain the performance of knowledge base system
(KBS). It is obvious that at no stage of KBS development
or exploitation, a perfect performance can be achieved by

Int. J. Advanced Networking and Applications 728
Volume: 02, Issue: 04, Pages: 723-731 (2011)

any KBS (except for small-scale application, where
exhaustive testing can be performed at the development
stage). Therefore, knowledge base refinement is expected
to take place constantly through KBS development, and
periodically throughout KBS exploitation. During KBS
development, knowledge base refinement is concerned
with the following two tasks:
Knowledge base revision: This takes place if a
structural or function error is revealed in the Knowledge
base-theory during its validation, and it consists of
introducing appropriate generalizations and/or
specializations in Knowledge base-theory to correct the
set of conclusions generated by the KBS. The knowledge
base revision aims to improve the inferential accuracy of
the Knowledge base-theory, and is required when an
inconsistency and/or incompleteness is detected during
KBS validation.
Knowledge base restructuring: This aims to improve
the operating characteristics of the KBS by recognizing
and removing sources of potential performance
inefficiencies. A common cause for such inefficiencies is
redundant, circular or subsumed rules. The restructuring
of the Knowledge base-theory is intended to get rid of
such rules. It does not change the set of conclusions
generated by the system, but it may change the way in
which some conclusions are derived, i.e. the knowledge
base restructuring aims to eliminate redundancies,
subsumptions and circularities from the Knowledge base-
theory to assure its convergence and efficiency.

7.1. Refinement, Verification and Validation
 The refinement should be thought of as
complementary to verification and validation. When a
verification and validation phase has been completed, a
refinement phase should be executed, with the benefit of
the information assembled by verification and validation.
A refinement system responds to the existence of
evidence suggesting the need for change. So what types
of evidence can be provided? Traditionally the evidence
takes the form of examples provided by the expert. Here,
it is suggested that the faults identified by verification
and validation tools are also suitable triggers for
refinement. In many cases, evidence consists of the
effects of the faults and the major effort within
refinement is precisely: ‘‘identifying exactly what should
be changed, and how’’. Here it is argued that knowledge
refinement is a natural extension to verification and
validation systems, and may even be considered as a
collaborating system, which gains from the analysis
undertaken during faultfinding. Thus refinement, also,
becomes an ongoing process throughout the life cycle.
[15].

7.2. Refinement and Theory Revision
 The field of knowledge refinement is closely related to
the subfield of Machine Learning known as theory
revision [16], [17]. Traditionally, refinement has been
identified as a subfield of Knowledge Acquisition. Early
in the KBS development, knowledge acquisition consists
of new knowledge being assembled and integrated in the

KB. However, as the KB evolves, it is often more
appropriate to change existing knowledge rather than
always acquire new knowledge. This process of altering
knowledge, and possibly incorporating new knowledge,
is known as knowledge refinement and is often a distinct
step in the final phases of development; most of the KB
is acceptable, but small changes are made to the content
of the knowledge (not the structure) so that unwanted
behavior does not reoccur. As refinement generation
becomes more automated it becomes an emerging field
in Machine Learning, where it is often referred to as
theory revision[15].

7.3. Characterizations of Knowledge Refining

Systems
 The knowledge refining systems will be characterized
in terms of their basic knowledge representation,
consistency in refining process compared to initial
knowledgebase development, domain knowledge
dependence, and the direction of refinement (generation,
specialization, or both by adding or deleting conditions).
The basic ways of representing knowledge are two-fold:
propositional (binary) or predicate (continuous) value
representation. While SEEK [17], SEEK2 [19], and
KBANN [20] employ propositional attribute value
representation, FOIL [21] and GOLEM [22] turn to
predicate representation. The main strength of the
propositional representation lies in its simplicity. But,
this convenience leads to implementation limitations - a
new proposition is created every time new attribute
values are added. It is also difficult to establish
relationships between propositions since they only have
true or false values. In terms of maintenance, predicate
value representation is more efficient and flexible. Yet
there is no standard process for creating predicates, and
generalization and/or specialization of knowledge is not
straightforward as in the case of propositional
representation. If knowledge is represented as
propositions, simply checking the existence of
propositions is enough; but for predicate representation,
the existence of predicates as well as the domain value
range must be checked.

8. Knowledge Representation Methodology based
XML
The primitives used for knowledge representation (KR)
are disorder names, and rule attributes definitions. The
attribute definitions are the possible signs and symptoms.
The generated signs and symptoms are called findings. In
fact, a finding is a symptom or a sign observed by the
user. So, the finding consists of three parts: a concept,
characteristic or a property, and an associated value(s).
 The findings together with the disorder names are used
to configure rules. In the other word each rule consists of
a disorder name and a set of findings.
 XML (Extensible Markup Language) has emerged as
the most important format for data exchange and storage
over systems across the greatest variety of tools and
platforms. It is a rapidly maturing technology with
powerful real-word applications, particularly for the

Int. J. Advanced Networking and Applications 729
Volume: 02, Issue: 04, Pages: 723-731 (2011)

management, display and organization of data. Together
with its associated tools (XSL, XSLT, XPath, XLink,
XPointer, DOM DTD, Schemas, …etc), it is an essential
technology for anyone looking for more efficient and
cost effective ways of both managing and transferring
data. Perhaps the most well known applications are web
related, but there are many other non-web based
applications where XML is useful–for example as a
replacement for (or to complement) traditional database
[23]. A lot of languages that are based on XML are
around, e.g., RDF [24], OIL [25], DAML+OIL, OWL,
etc. Those importances of those languages are related to
semantic web [26]. To realize the semantic web vision, it
was necessary to express semantics of data using those
languages. In our work, we propose a new language to
express the semantic of the well-known knowledge
representation schemes as for instance: rules, dependency
graph, frame, semantic network, etc. Further, XML tools
have been used to develop a library of inference methods
to be used for reasoning on different representations.
 An XML document is a hierarchically structured and
self-describing piece of information, and consists of
atomic elements or complex elements (elements with
nested subelements). An XML document incorporates
structure and data in one entity. To this extent, XML data
is semistructured data.
 The processing and management of XML data are
popular research issues. However, operations based on
the structure of XML data have not received strong
attention. These operations involve, among others, the
grouping of structurally similar XML documents. Such
grouping results from the application of clustering
methods with distances that estimate the similarity
between tree structures.

The advantages of using the XML as a knowledge
representation scheme are:

• Providing compatibility between different tools and
even between different versions of the same tool.

• Preparing reports for reviewing of knowledge base by
domain experts

• Deploying expert systems applications efficiently on
the Web

• Providing a readable and elegant explanation of
deducted conclusions.

• Facilitating knowledge base refinement and
optimization.

• Supporting knowledge base verification, validation and
maintenance.

• Any reasoning over this representation improves the
performance of the knowledge-based system by
reducing the response time of knowledge-based
expert system and minimizing the number of
generated questions.

• Facilitating easy transmission of structured data over
existing network protocol [27].

8.1. Rule Representation

 We propose an XML-based to represent the
knowledge. In this representation the rule is represented
as parent node and its findings are represented as a set of
child nodes (subnodes).
 So the parent node consists of four parts: Rule tag,
Name attribute, Disorder attribute, and NoTrueFindings
attribute, where:
The Name attribute represents the rule id.
The Disorder attribute represents the disorder name.
The NoTrueFindings attribute represents the number of
the findings in the rule and which are in working
memory.
The parent node is expressed as:

<Rule Name=value Disorder=value
NoTrueFindings=value>.

 Every element in the set of subnodes consists of five
parts: Finding tag, Cpt attribute, Prop attribute, Val
attribute, Equal attribute, and ExistInWM attribute
where, Cpt, Prop, Va, Equal, and ExistInWM the
concept of the finding, the property of the finding, the
value of the finding, the present or absence of the
finding, the existence of the finding in the working
memory; respectively.

Every child node is expressed as:

<Finding Cpt="Concept" Prop="Property"
Val="value" Equal="Yes/No"

ExistInWM=”Yes/No” />

The following example explains how rule structure is
represented using XML format.

8.1.1 Working Example
Suppose that the Red Spider disorder existed when the
color of the leaf spot is yellowish green, the position of
the leaf spot is upper surface, and the color of the leaf is
dirty. We can represent this rule using our representation
as follow:
<Rule Name="rule19" Disorder="Red_spider"
NoTrueFindings ="0">
<Finding Cpt="Leaves_obs" Prop="Spots_color"
Val="yellowish green" Equal="Yes" ExistInWM=”No”
/>
<Finding Cpt="Leaves_obs" Prop="Spots_position"
Val=”upper surface"" Equal="Yes" ExistInWM=”No” />
<Finding Cpt="Leaves_obs" Prop="Color" Val="dirty"
Equal="Yes" ExistInWM=”No” />
</Rule>

8.2. Complete Example
 Suppose the original knowledgs base contained the
following rules:
R1: F1, F3, F6 D1
R2: F1, F8 D1
 R3: F2, F5, F6 D2
 R4: F4, F6, F7 D3
R5: F3, F7, F9 D4

Int. J. Advanced Networking and Applications 730
Volume: 02, Issue: 04, Pages: 723-731 (2011)

R6: F5, F7, F8 D5

 Initially the refined knowledge base (RKB) is empty,
so the following table illustrates the steps of the
algorithm.
Rule no = R1
FindingsSet = [F1,F3,F6]
PowerSetOfFindingsSet =
[[F1],[F3],[F6],[F1,F3],[F1,F6],[F3,F6],[F1,F3,F6]]

Finally the refined knowledge base contains the
following rules

RR1: F1 D1
RR2: F3, F6 D1
RR3: F2 D2
RR4: F4 D3
RR5: F6,F7 D3
RR6: F9 D4
RR7: F3, F7 D4
RR8: F5, F7 D5
RR9: F5, F8 D5
RR10: F7, F8 D5

9. Conclusions
 In this paper, most of the major features of the XML
Language have been discussed. Hopefully the reader will
have enough background to pick up and read the XML
specifications without difficulty.
 The primary objective of this paper is to develop a
computer-based diagnostic expert system that can be
used in the diagnosis and treatment of diseases. In other
words, developing our expert system is web using XML
Language.
 Thus, we developed three different rule-based systems,
each designed to take XML as an input, and produce
XML as an output and manipulate intermediate facts as
XML. They used very different methods of representing
the XML during rule processing.
 So we developed this XML program to be used on the
internet, support wide variety of applications and make it
easy to write programs which process XML documents
which will be human- legible and reasonably clear and
easy to create.

The Knowledge refinement has an important role to play
in the process of knowledge acquisition and
maintenance. However, there is a difference of emphasis;

knowledge refinement is more concerned with improving
the performance of existing knowledge base systems.

 An optimal knowledge base will consist of a set of
rules, which have a minimal set of findings. The number
of rules and their findings in the initial knowledge base is
directly proportional to the optimization ratio. In this
work, the verified, and refined knowledge bases cover
the initial knowledge bases. The refined, and verified
knowledge bases do not only have an optimized number
of rules, and findings, but they also have optimized and
enhanced three types of reasoning mechanism.

References
[1] Gilbert Tekli, Richard Chbeir Towards an XML

Adaptation/Alteration Control Framework. 2010
Fifth International Conference on Internet and Web
Applications and Services. IEEE pp 248-255, 2010.

[2] Awad H. Khalil. A framework for Security

Enforcement in XML-based B2B Applications. In
Proceedings of The Eleventh International
Conference On Artificial Intelligence Application,
ICAIA, pp: 77-84, 2003.

[3] J.Broekstra et al. Enabling Knowledge
Representation on the web by Extending RDF
Schema. Proc. 10th Int’l World Wide Web Conf.,
Hong Kong, 2001.

[4] Ora Lassila and Ralph R. Swick. Resource
Description Framework (RDF) Model and Syntax
Specification. Recommendation REC-rdf-syntax-
19990222, W3C, February 1999.

[5] Buchanan, B.G. and Shortliffe, E.H.. Rule-Based
Expert System: The MYCIN Experiments of the
Stanford Heuristic Programming Project. Reading,
MA: Addison-Wesley, 1984.

[6] Zlatareva, N.. A Refinement Framework to Support
Validation and Maintenance of Knowledge-Based
System. Expert System with Application, vol. 15,
pp.245-252, 1998.

[7] Blaž Zupan , Albert Mo Kim Cheng. Optimization of
Rule-Based Systems Using State Space Graphs. IEEE
Transactions On Knowledge And Data Engineering,
Vol. 10, No. 2, March/April,1998.

[8] Schnupp, P.H.; "Building Expert System in Prolog ",
Amiz, 2000.

[9] S.G. Tzafestas, H.B. Verbruggen, Artificial
intelligence in industrial decision making control, and
automation: an introduction, in: S.G. Tzafestas, H.B.
Verbruggen (Eds.),, Artificial Intelligence in
Industrial Decision Making, Control and Automation,
Kluwer, The Netherlands, , pp. 1–39, 1995.

[10] H. Wang, D. Linkens, Intelligent supervisory
control. A qualitative bond graph reasoning approach,
World Scientific, Singapore, 1996.

[11] Minsky M.; " Semantic Information Processing ",
Cambridge, Mass. :MIT Press , 1968.

[12] Jain, L. and A. M. Fanelli; "Recent Advances In
Artificial Neural Networks Design And
Applications", CRC Press, 2000.

SubSumsionExist Disorders
List

Identi
calSet

RKB

(F1,RK)=False [D1, D1] True F1 � D1
(F3,RK)=False [D1,D5]. False
(F6,RK)=false [D1, 2,D5] False
([F1,F3],RK)=True
([F1,F6],RK)=True
([F3,F6],RK)=False [D1] True F3, F6

�D1
([F1,F3,F6],RK)=True

Int. J. Advanced Networking and Applications 731
Volume: 02, Issue: 04, Pages: 723-731 (2011)

[13] Barr A. and E. A. Feigenbaum, eds.; "The
Handbook of Artificial Intelligence",Vol. 1, Los
Altos, Calif: Morgan Kaufman, 1981.

[14] George F. Luger and William, A. Stubblefield; "
Artificial Intelligence and the Design of Expert
Systems", The Benjamin/ cummings publishing Co.,
Inc., 1989.

[15] Susan Craw.. Refinement complements verification
and validation. Int.J.Humam-Computer Studies,
44(2), 245-256, 1996.

[16] Adé, H., Malfait, B. & De Raedt, L. RUTH: an ILP
Theory Revision System. Eighth International
Symposium on Methodologies for Intelligent Systems
(ISMIS94), 336-345, 1994.

[17] Ourston, D. & Mooney, R. J. Theory Refinement
Combining Analytical and Empirical Methods.
Artificial Intelligence, 66, 273-309, 1994.

[18] Politakis, P., and Weiss, S. Using Empirical
Analysis to Refine System Knowledge Bases.
Artificial Intelligence, Vol. 22, pp. 23-48, 1984.

[19] Ginsberg, A., Weiss, S., and Politakis, P. A
Generalized Approach to Automate Knowledge
Based Refinement. Proceedings of 9th IJCAI, Vol. I,
Los Angeles, California, pp. 18-23, 1985.

[20] Shavlik, J. W., and Towell, G. G. An Approach to
Combining Explanation-Based and Neural Learning
Algorithms. Connection Science, Vol. 1, pp. 233-
255, 1989.

[21] Quinlan, J. R. Learning Logical Definitions from
Relations. Machine Learning,Vol. 5,pp.239-266,
1990.

[22] Muggleton and Feng. Efficient Induction of Logic
Programs. Proceedings of the First Conference on
Algorithmic Learning Theory, Ithaca, New York,
1990.

[23] Awad H. Khalil. A framework for Security
Enforcement in XML-based B2B Applications. In
Proceedings of The Eleventh International
Conference On Artificial Intelligence Application,
ICAIA, pp: 77-84, 2003.

[24] J.Broekstra et al. Enabling Knowledge
Representation on the web by Extending RDF
Schema. Proc. 10th Int’l World Wide Web Conf.,
Hong Kong, 2001.

[25] Ora Lassila and Ralph R. Swick. Resource
Description Framework (RDF) Model and Syntax
Specification. Recommendation REC-rdf-syntax-
19990222, W3C, February 1999.

[26] Tim Berners-Lee, James Hendler, and Ora Lassila.
The Semantic Web: A New Form of Web Content
that is meaningful to Computers Will Unleash a
Revolution of New Possibilities. Scientific
American, 284(5): 34-43, May 2001.

[27] Bray, T., Paoli, J., Sperberg-McQueen, C. M. Eds.
Extensible Mark-up Language, W3 Consortium
recommendation paper.,
http://www.w3.org/TR/1998/ REC-xml-19980210,
Feb. 1998.

Authors Biography

DR. Yasser Ahmed Nada Was born in
Ismailia, Egypt, in 1968. He received the
BSc degree in pure Mathematics and
Computer Sciences in 1989 and MSc
degree for his work in computer science
in 2003, all from the Faculty of Science,

Suez Canal University, Egypt. In 2007, he received his
Ph.D. in Computer Science from the Faculty of Science,
Suez Canal University, Egypt. From September 2007
until now, he worked as a lecturer of computer
science, Faculty of Computers and Information Systems
Taif University, KSA. His research interests include
Expert Systems, Artificial Intelligence, Object Oriented
Programming, Computer Vision, and Genetic.

